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of a charged particle bunch from its coherent far-ir spectrum
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The coherent far-infrared radiation induced from relativistic electron bunches of submillimeter length
provides a way to characterize the bunch shape. Once the spectrum of the bunch form factor is mea-
sured, one can apply the Kramers-Kronig relations to the spectral form factor to find the minimal phase
and then calculate the bunch shape from the complete Fourier transform. One potential problem is the
uniqueness of the phase so determined since, in general, the phase shift associated with the Blaschke
product must also be included. Here we examine a variety of possible asymmetric bunch shapes in order

to identify any errors inherent in this approach.

PACS number(s): 41.75.Ht, 41.60.—m, 41.85.Ew -

The production of relativistic electron bunches in sub-
millimeter size and the proposals for even smaller
bunches definitely tax the limits of streak camera mea-
surement techniques [1]. In addition, the calculations
that show that specifically shaped charge distributions
can minimize the energy spread within a single bunch [2]
have brought attention to the experimental problem of
characterizing the shape of such objects on a subpi-
cosecond time scale. A developing technique makes use
of the spectral information in the coherent far-infrared
synchrotron or transition radiation that is produced un-
der appropriate conditions at long wavelengths when the
emitted wavelength is comparable to the bunch length
[3-11]. In all of these cases the bunch shape has been
calculated from the spectrum with a cosine Fourier trans-
form so that only a symmetric shape can be found. Re-
cently it has been proposed that a logarithmic Hilbert
transform of the spectrum be used to find the phase infor-
mation so that a more complete description of the bunch
shape can be determined from the data [12]. The
coherent synchrotron or transition radiation spectrum
emanating from millimeter long electron bunches pro-
duced at the Cornell University linear accelerator has
been analyzed in this way and the bunches are found to
be asymmetric [13]. In both of these works it is assumed
that the minimal phase obtained from the Hilbert trans-
form is the appropriate phase to use in calculating the
bunch shape. In all such phase retrieval problems, it is
the modulus of the complex function and its phase that
are of interest and it has been shown, in general, that
when the logarithmic Hilbert transform is used, the
dispersion relation for the phase shift includes both the
minimal phase shift and also the phase shift associated
with the Blaschke product [14]. A great deal of effort has
gone into characterizing this phase problem because of its
potential use in optics [15]. In some cases, such as the
Kramers-Kronig analysis of the reflectivity of solids, it is
possible to show that because the imaginary part of the
dielectric function is always positive for positive frequen-
cies, the Blaschke product can be ruled out [16]. In addi-
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tion, it has been demonstrated for a broad spectrum such
as the blackbody one that the Blaschke product does not
contribute so that only the minimal phase results [17].
On the other hand, it also has been shown for both
Lorentzian and Gaussian line shapes that the Blaschke
product does contribute to the reconstructed spectrum
[18]. In this paper we examine in some detail the applica-
tion of this spectrum transform technique to bunch shape
determination to identify it strengths and weaknesses.

The total intensity of far-infrared radiation produced
by an electron bunch can be obtained by summing the
electric field over all the N electrons with the phase rela-
tions between different electrons taken into account. This
leads to [19]

I (@)=I(@)[N+N(N—1)F(0)] , §))

where J(w) is the intensity produced by a single electron
and F(w) is the form factor. For relativistic electrons
the radiation appear in the forward direction with the
maximum intensity at 6~1/y. For this 6—0 limit, the
form factor can be simplified as

Flo)= 1f0wdz S(z)ei(w/c)z 2 . 2)

Here NS (z)dz is the number of electrons in the region be-
tween z and z +dz, where S (z) is the normalized longitu-
dinal distribution function of electrons in the bunch.

To obtain maximum information about the bunch
shape from the measured form factor data, we first
redefine the integral in Eq. (2). Let

§(a))Efode S(z)ei(w/c)zzp(w)eidz(m) . 3)

The complex function S(w) defined in Eq. (3) is a regu-
lar function in the upper half of the complex frequency
plane. Note the formal similarity between Eq. (3) and the
corresponding expression for the complex degree of
coherence, which involves an integral of similar form
over positive frequencies [20] or the input-output
response analysis used in optics to obtain the complex
reflectivity at an interface, which involves an integral of
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similar form over positive time [16]. In analogy with
these earlier analyses, we write

InS(w)=In p(ew)+iP(w) . @)

The regularity of S$(®) in the upper half plane imposes a
severe restriction on the phase factor y¥(w) associated
with any given p(w) and the dispersion relation for Eq.
(4) has the same form as for the real and imaginary parts
of In[?(®)] [16] so that [14,21]

¢(w)=¢m (0)+ 1/}Blaschke(w)
=_2_a) o In B(x)
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where the first term ¢,, (@) is the minimal phase, and the
second term Ppjyepi{@) is the contribution from the &;’s,
namely, the zeros of S(&) in the upper half of the com-
plex frequency plane, and P denotes the principal value.

Once F(w) is experimentally determined over the en-
tire frequency spectrum, then by Eq. (3) so is p(w). With
the aid of Eq. (5), the normalized distribution function
can now be obtained from the inverse Fourier transform
of Eq. (3), namely,

I
S)=— [ “doplw) (©)

0z
Y(w) .

However, only the minimal phase can be uniquely deter-
mined from p(w) since the Blaschke phase in general can-
not be determined experimentally. In the reflectivity
problem the possibility of a zero in #(®) is excluded since
there is always some absorption process, while in the
bunch shape problem we cannot arbitrarily exclude the
possibility of zeros in §(®). If (&) has no zeros in the
upper half plane, the phase contribution from the zeros
YBlaschkel @) =0 and the minimal phase can be used to re-
cover the bunch distribution. Although the analytic con-
tinuation of the form factor of many distribution func-
tions has no zeros in the upper half of the complex fre-
quency plane, it is not the general case.

Some insight into the second term in Eq. (5) is of value.
First, zeros on the real axis give no contribution to the
phase. It was shown by Titchmarsh that as Re(w)— oo,
the distant zeros tend to be located along the real axis
with a spacing of 2wc/o,, where o, is the full bunch
length. Therefore, those zeros make little contribution to
the phase and contain no information about the bunch
shape [22]. Second, zeros of S(®) are always paired to-
gether, i.e., if & j is a zero, so is —c’b;‘ since the distribu-
tion function S(z) is necessarily real [18]. One can show
that the contribution from such a pair of zeros is linear
with » and negligible provided |®;| >>w. Therefore, only
“nearby” zeros, that is, zeros near the region over which
the spectrum is measured, have an effect on the bunch
shape. It follows that the minimal phase evaluated from
the first term in Eq. (5) is a good approximation to the ac-
tual phase in cases where the form factor has no nearby
zeros in the upper half of the complex frequency plane.

Both measured coherent synchrotron and transition ra-
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diation spectra of electron bunches show strong interfer-
ence patterns, an indication of a structured bunch. To
describe a multiple peaked bunch shape we examine it
from the point of view of a superposition of simple
Gaussian shapes since it has been shown by Nussenveig
[18] that the Fourier transform of a truncated Gaussian
distribution has no nearby zeros in the upper half plane.
This means that if one were to use the form factor of a
Gaussian bunch to calculate the minimal phase, then an
undistorted Gaussian bunch shape would be found. To
test more complex shapes we model the bunch distribu-
tion function by a superposition of three truncated
Gaussians to include both asymmetry and local concen-
tration, i.e.,

3
S(z)= 3 a;G(z,z;,0;)/N, 0<z<o,, 7)
ji=1

where o, is the full bunch length over which S(z) is
nonzero, a;/N is the fractional weight of the jth com-
ponent, and G(z,zj,a j) is a normalized Gaussian distri-
bution function centered at z; with standard deviation o ;.

The solid line in Fig. 1 shows the bunch distribution
function given by Eq. (7) for a specific set of parameters.
The bunch consists of an asymmetric main contribution
and a satellite postbunch. The form factor of such a
complex bunch shape plotted as a function of frequency
in Fig. 2(a) contains an interference pattern. The pro-
cedure now is to use this frequency-dependent form fac-
tor data to calculate the minimal phase for this complex
spectrum and then determine the bunch shape to see if a
Blaschke phase contribution has been missed.

The solid curve in Fig. 2(b) shows the actual phase of
S(w) and the dot-dashed curve is the minimal phases as-
sociated with the spectrum in Fig. 2(a) calculated from
the first term of Eq. (5). The dot-dashed curve agrees
with the solid curve up to w/wy=30, above which small
discrepancy between the minimal phase and actual phase
appears. This indicates that §(w) has no nearby zeros
but does have “distant” zeros. The corresponding bunch
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FIG. 1. Comparison of the exact longitudinal bunch distribu-
tion function with that calculated from the form factor. Solid
curve, the exact longitudinal bunch distribution function given
by Eq. (7) with a specific set of parameters «;=0.5,
z,/0,=0.15, o0,/0,=0.04; «,=0.3, z,/0,=0.25, o,/0,
=0.05; a;=0.2, z3/0,=0.7, 03/0,=0.1. Dot-dashed curve,
the longitudinal bunch distribution function calculated from the
form factor with the minimal phase approximation.
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FIG. 2. Form factor and phases as functions of frequency for
the superposition of Gaussians shown as the solid curve in Fig.
1. (a) Form factor versus frequency. (b) Phase versus frequen-
cy, calculated two different ways: solid curve, the actual phase;
dot-dashed curve, the calculated minimal phase.

distribution calculated from Eq. (6) using the minimal
phase is plotted in Fig. 1 as the dot-dashed curve. The
good agreement between the solid and dot-dashed curves
in Fig. 1 demonstrates that the minimal phase is indeed a
good approximation to the actual phase in this case. This
is also confirmed by our numerical calculations on bunch
distribution functions with different sets of parameters as
long as the first Gaussian is the strongest.

The minimal phase, however, may not be a good ap-
proximation to the actual phase when a weak Gaussian
appears first. Plotted in Fig. 3(a) as the solid curve is
another superposition of the same Gaussian used in Fig. 1
but with the centers changed so that the strongest one is
in the middle. The calculated minimal phase is plotted in
Fig. 3(b) as the dot-dashed curve. The significant
discrepancy between the minimal phase and the actual
phase (solid curve) indicates that the Blaschke phase can-
not be ignored in this case. For comparison, the corre-
sponding bunch distribution calculated from the minimal
phase is plotted in Fig. 3(a) as the dot-dashed curve. It is
interesting that the widths of both the main bunch and
the satellite bunch are close to the actual ones, although
the bunch shape resulting from the minimal phase is
significantly different from the actual shape.

The condition for the minimal phase approximation—
that the first Gaussian is the strongest—may be under-
stood on the basis of the Rouche’s theorem [23], which
states that if two functions § 1(®) and §2(c’6) are regular
in a region C of the complex plane and if |S,(®)|>5,(d)|
at every point of the boundary of C, then this is a
sufficient but not necessary condition for §,(») and
S,(®)+8,(®») to have the same number of zeros in C. It
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FIG. 3. Example of a bunch distribution in which the actual
phase is very different from the minimal phase. (a) Solid curve,
the longitudinal bunch distribution function given by Eq. (7) is
such that a weak Gaussian precedes a strong Gaussian com-
ponent. Parameters «;=0.3, z,/0,=0.15, o,/0,=0.05;
a,=0.5, z,/0,=0.27, 0,/0,=0.04; a3;=0.2, z;/0,=0.7,
03/0,=0.1. Dot-dashed curve, the longitudinal distribution
function calculated from the form factor (not shown) with the
minimal phase approximation. (b) Phases versus frequency:
solid curve, the actual phase; dot-dashed curve, the minimal
phase.

then follows from this theorem that the form factor of a
distribution function with a strong component followed
by some weaker components may have no zeros or near-
by zeros in the upper half plane as long as S(w) of the
strong component has no zeros or nearby zeros, such as a
Gaussian.

In conclusion, the Kramers-Kronig transform tech-
nique can be used to determine the minimal phase from
the bunch form factor if it is known over a sufficiently
large frequency interval and as long as weak bunch com-
ponents follow the strong one. When this minimal phase
is then used together with the form factor amplitude the
asymmetric bunch shape can be determined. In princi-
ple, the phase determined from the form factor could be
larger than this minimal value and then the Kramers-
Kronig transform approach would fail in the sense that
the detailed shapes would be wrong, although the calcu-
lated widths would still be correct. We have examined a
number of different bunch shapes to see how and when
this problem would appear. Bunches with more than one
peak were simulated by superimposing a number of
Gaussian components. Our study of this case shows that
the minimal phase is the appropriate phase to use to de-
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scribe this complex structure as long as the largest
Gaussian component comes first.

Discussions with M. G. Billing, U. Happek, M. Tigner,
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